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Nomenclature

J = cost function

N = number of impulses

Nit = number of low-thrust-independent thrusters

P = primer-vector magnitude

)/ = primer vector

P = primer-vector absolute maximum

r = relative position vector

r; = space collocation of the jth impulse

iy = final time

Fint = intermediate time

t = time instant of the jth impulse application

t = midcourse time corresponding to the primer
absolute maximum

to = initial time

u = thrust unit vector

\4 = relative velocity vector

X, v, 2 = coordinates in the local vertical, local horizontal
coordinate system

AV, = jth impulse vector

d(t—1t;) = Dirac’s delta at time ¢,

v = anomaly on the circular orbit

A, = position adjoint vector

Ay = velocity adjoint vector

r = control vector magnitude

D(r) = state transition matrix for the Clohessy—Wiltshire
equations

() = convolution integral matrix for the Clohessy—

Wiltshire equations due to optimal unbounded
control
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angular velocity of the local vertical, local
horizontal coordinate system

WLVLH

I.

HYBRID method is introduced for a minimum-propellant
rendezvous and docking maneuver of a spacecraft having both
multilevel continuous and impulsive thrusters. We assume that the
chaser spacecraft uses a set of independently operated time-
continuous low-thrust actuators for the rendezvous maneuvering far
from the target and then switches to impulsive thrusters for the
docking maneuver.

Several researchers have studied the case of rendezvous and
docking maneuvers of spacecraft with continuous thrust [1-6]. In
particular, Guelman and Aleshin [4] proposed to find the minimum-
propellant solution by imposing an upper saturation on the thrust
magnitude, by using Pontryagin’s principle and by iteratively
changing the initial costate to minimize the error in reaching the final
desired condition. Furthermore, a vast amount of literature exists on
orbital-change maneuvers with impulsive thrust [7-9]. In particular,
Lawden [7] established a set of six necessary conditions of
optimality, based on the definition of the primer vector as the adjoint
velocity, and Neutstadt [8] demonstrated that for linear systems, the
number of impulses is upper-limited by the number of the final
conditions.

In our paper, we build upon the previously mentioned references
and give the following two original contributions. First, we consider
the maneuver divided into two phases: a rendezvous phase with
continuous thrust and a final docking phase with impulsive thrust.
Second, for the continuous-thrust phase, we assume each of the three
thrust components to be generated by a cluster of independent low-
thrust engines, each one operating either at the maximum or at zero
thrust (on—off). We believe that the main advantage of our approach
consists in being practically applicable, in principle, to spacecraft
using current solar—electrical limited-power propulsion technology.

An outline of our proposed approach follows. For the first phase of
the maneuver (rendezvous), a minimization algorithm is used to find
the adjoint initial conditions and the final time that bring the chaser
vehicle to the desired final condition of the first phase (intermediate
condition of the whole maneuver). In particular, we extend the
method proposed in [4] by considering multiple discrete levels of
thrust. Furthermore, we limit the thrust component along each
direction (x, y, and z) to better represent the reality of engine clusters
mounted on the sides of the spacecraft. For the second phase of the
maneuver (docking), the two-impulse maneuver is first determined
in closed form and the related primer-vector history is analyzed.
Then additional impulses are added as needed to satisfy Lawden’s
conditions by optimizing their time location using a gradient-search
technique [10-13]. This procedure is similar to the one previously
used for orbital-transfer optimization [10,11].

In the present paper, we adopt the linear Hill-Clohessy—Wiltshire
(HCW) dynamic model and we neglect the attitude dynamics.

Introduction

II. Optimum-Control Problem Definition

and Proposed Solution
The problem statement is as follows: given an initial state of the

chaser spacecraft with respect to the target-centered local vertical,
local horizontal (LVLH) coordinate system, an intermediate state
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and a maneuver time 7, — ¢, determine 1) the optimum continuous-
thrust profile for the first phase of the maneuver (from the initial to the
intermediate state; in particular, a set of discrete admissible thrust
values is assumed) and 2) the optimum sequence of impulses for the
second phase of the maneuver (from the intermediate state to the
docking condition, that is, zero relative position and velocity of
chaser vs target).

The normalized form [4] of the HCW equations is used to
represent the relative state-vector evolution:

00 0
vi_[o 17r 0
{V}_[A1 Az]{V}+{Fu}’ S DA
0 2 0
A=|-2 00
0 0 0
6]

where [ represents the 3 x 3 identity matrix, and the x, y, and z
axes are oriented along the opposite direction to the target velocity,
the radius vector from Earth to target, and the normal to the orbit
plane, respectively.

For the first phase of the maneuver (continuous thrust), the cost
function and related Hamiltonian are [4]

J= %/ " (Tw)" - (Tu) dt @)

H=1Tu-u+Al-V+LAL - (Ar + AV + Tu) 3)

By applying the minimum principle, it yields [4]
Tu=—-Ay 4)

Moreover, the time evolution of the costate is described by

(-2 2T
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Because we consider each thrust component to be generated by a
cluster of N p-independent, continuously operated on—off actuators
having, in general, different performances, the acceleration for each
direction is constrained to assume a set of discrete values between
zero and a maximum. The consequent discretization and saturation
introduce a state error at the intermediate-maneuver condition.

The optimum control problem for the first phase of the maneuver is
solved by iteratively searching for the values of the initial condition
of the costate vector and final time, which minimize the norm of the
error between the desired and actual final state of the first phase of the
maneuver (intermediate state of the whole maneuver). This error is
found by propagating Eq. (1). As an initial guess, the initial costate
vector for unbounded continuous control is used [4]:

xo:_\pfl(tf—to)[qu_t“){(/%}_ {‘r/ff” ©

where W(7) is the convolution integral for the state vector due to the
optimal unbounded control (see the appendix of [4] for the explicit
form).

In particular, we used a custom implementation of a multicriterion,
multivariable routine for direct-search optimization, based on the
Hooke—-Jeeves algorithm [14]. The Matlab £solve routine, which
was used in [4], was not capable of treating the discretized problem.

For the second phase of the maneuver (impulsive thrust), the
following cost function is considered:

Tint

N
.
J=/’|ru|dt=ZAV,., N=2,...6 %)
i=1
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where we assumed
N
Tu=" AVS(t—1)
=1

The maximum value of N is six, because of Neustadt’s [8] theorem.
To solve this optimum control problem related to the second phase of
the maneuver, we need to find the optimal combination of the
following variables: total number of impulses, time of each impulse
t;, space collocation of each impulse r;, and consequent value of each
impulse AV;. This optimum control problem is conveniently
translated into the following necessary, and sufficient for linear
systems, Lawden’s [7] conditions of optimality on the primer vector
(costate associated with the velocity Ay), which has the same
direction as the thrust vector:

Condition 1) p is a continuous function of time up to the first
derivative

Condition 2) during coasting (I'=10), p < 1

Condition 3) at an impulse p = 1, tangent to 1 from below

Condition 4) at an impulse time u = p

Condition 5) if p(¢,) > 0, initial coasting is needed

Condition 6) if p(t;) < 0, final coasting is needed.

Interestingly, final coasting is never needed for the docking case,
that is, for zero position and velocity at final time. Indeed, final
coasting would imply a nontrivial solution for a six-equation
homogeneous system with seven unknowns (time instant #* and the
associated state vector). But the determinant of the corresponding
transition matrix never vanishes (at r* =1, it gives an identity
matrix)

det(®) = cos*(t; — 1*) + 2sin(1; — r*)cos?(t; — 1*)
+ sin®(¢; — 1*) 8)

Then a final AV is always required for the docking case.

The following algorithmic steps are applied to satisfy Lawden’s
six conditions and minimize the cost function [10,11]:

Step 1) The two impulses bringing the chaser spacecraft from the
intermediate to the final state are calculated in closed form [9].

Step 2) The maxima of the magnitude of the primer vector
exceeding one are analytically found for this maneuver.

Step 3) A new midcourse impulse is added at the primer absolute
maxima (condition 4).

Step 4) The impulses before and after the new midcourse impulse
are modified to match the boundary conditions. The calculation for
steps 3 and 4 exploits linear system theory and can be found in [11].

Step 5) The midcourse impulse locations in time and space are
adjusted by a conjugate gradient-search technique to force the
satisfaction of conditions 1 and 3. Consequently, steps 3 to 4 are
iteratively repeated.

Step 6) Repeat steps 2 to 5 for each segment of trajectory included
between two impulses. The boundary conditions to be used in step 4
are the current-segment initial and final states.

Step 7) Stop when either the number of impulses reaches six or
Lawden’s conditions are satisfied.

Table 1 Boundary conditions for the sample maneuver

Variable name Measurement units Value
r(ty) km [15 0 2]"
V(t,) ms~! [10 0 2]
P(tim) km [-3 0 o]
V(tin) ms~! [25 0 o]
r(ty) km 0 0 of"
V(ts) ms~! [0 0 0]7‘
to s 0

tr s 13,000
tint s 8500
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Fig. 1 Results for the maneuver’s first phase: a) trajectory obtained and b) continuous acceleration profile.
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Fig. 2 Results for the maneuver’s second phase: a) obtained trajectory and b) primer-vector norm and impulses.

III. Implementation Details and Simulation Results

The preceding algorithms were implemented in Matlab. A sample
rendezvous and docking maneuver is presented here with the
boundary conditions of Table 1. In particular, for the first phase of the
maneuver (continuous thrust), we considered a cluster of five
electrical thrusters for each thrust component (N; ; = 5), each able to
give a fixed level of acceleration (10~ ms™2). The maximum
resulting acceleration with all electrical thrusters on is then
5% 1073 ms~2.

The target spacecraft orbits at an altitude of 480 km above the
Earth’s surface. Figure 1 reports the optimal trajectory for the low-
thrust segment and the corresponding acceleration profile. The
desired switching structure is obtained, which can be followed by a
cluster of five different engines. The resulting costis 22.445 ms~' for
the first stage.

The error in reaching the intermediate state, defined as
the difference between the desired condition and the actual one,
is  [-0.14 0.02 —0.38" km and [-4.22 2.11 5.45]"x
10~ km - s~'. The intermediate time is slightly adjusted by the
algorithm from 8500 to 8417 s.

Figure 2a reports the second-phase optimal trajectory, the stars
indicating the space collocation of the impulses. Figure 2b gives a
visual representation of the impulse insertion, up to four, and the
change of the primer-vector norm. In particular, the initial-guess
nonoptimal primer for the two-impulse maneuver is shown. By
adding impulses and by applying the conjugate-gradient technique,
the final optimum with four impulses is obtained, with impulse
magnitudes and burn instants as reported in Fig. 2b.

No initial coasting was needed for the presented case.

The total cost for the maneuver is 23.390 ms~!. To show the
potential of the proposed technique, the same initial conditions of
Table 1 were used to simulate a rendezvous to the origin of the LVLH
frame with the thrust-upper-bounded approach of [4]. By imposing
the whole thrust (the norm of the control vector) to be saturated at
5 x 10~ ms~! and by using a final time of 13,000 s as in the hybrid
approach, the solution restitutes a cost of 22.176 ms~'. We can
conclude that the hybrid-thrusters method is effective in optimizing
spacecraft-rendezvous maneuvers, because it generates a suitable
profile for the control variables without significantly increasing the
cost with respect to the purely continuous-thrust approach with thrust
modulation and gimballing.

We should furthermore underline the fact that, the final time being
the same for the two compared approaches, although in our hybrid
method, the thrust can assume higher values, it was expected that the
new technique restituted a higher cost.

IV. Conclusions

To consider real thrusters for rendezvous and docking, a hybrid
technique was presented for minimum-propellant maneuvers. The
relative motion between the agents involved in the proximity
operations is represented by the Clohessy and Wiltshire linear model.
We considered a finite set of low thrusts for distant maneuvers and
thrust impulses for the very last phase of flight to the target. The
method developed can be applied when a cluster of either different or
equal thrusters is mounted on the chaser spacecraft. Therefore,
electrical engines can be used for the distant segment and chemical
engines for the final stage, in which increased accuracy and control
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authority is needed. The approach takes into account the real
limitations of current space-qualified electrical thrusters, more
specifically, the difficulty of varying the thrust magnitude
continuously in time.

The low-thrust segment is solved by setting up a minimization
problem and by using a first-order algorithm. The second phase is
solved by imposing Lawden’s [7] conditions via a direct-search
technique. In conclusion, we generated a reliable procedure to
determine the switching structure of the low-thrust part and the
number, magnitudes, directions, times, and space collocation of the
impulses for the second phase of the maneuver.
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